	INDIAN S	SCHOOL AL WADI AL KABIR	
Class: XI	Department: SCIENCE 2023 – 24 SUBJECT: CHEMISTRY		Date of submission: 30.04.2023
Worksheet No: 01 WITH ANSWERS	CHAPTER / UNIT: SOME BASIC CONCEPTS OF CHEMISTRY		Note: A4 FILE FORMAT
NAME OF THE STUDENT		CLASS & SEC:	ROLL NO.

Multiple Choice Questions (1 M)

- 1. Which of the following reactions is not correct according to the law of conservation of mass?
 - a. $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$
 - b. $C_3H_8(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$
 - c. $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$
 - d. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
- 2. Which of the following statements indicates that the law of multiple proportions is being followed?
 - a. Sample of water taken from any source will always have hydrogen and oxygen in the ratio 2:1.
 - b. Carbon forms two oxides namely CO₂ and CO, where masses of oxygen that combine with a fixed mass of carbon are in the simple ratio 2:1.
 - c. A 10 g ribbon of Mg burns in oxygen and the entire magnesium converts to its oxide.
 - d. When two elements combine with a fixed mass of the third element, the ratio in which they do so is a simple whole number ratio.
- 3. Match the items in Columns I and II.

Column I	Column II
Physical quantity	Unit
i. Molarity	a. gml ⁻¹
ii. Mole fraction	b. Mol
iii. Mole	c. molkg ⁻¹
iv. Molality	d. Unitless
	e. molL ⁻¹

a. i - a, ii - e, iii - b, iv - c

b. i - b, ii - e, iii - d, iv - c

c. i-e, ii-d, iii-b, iv-c

d. i-e, ii-a, iii-b, iv-c

4. One atomic mass unit stands for

a. One C^{12} atom

b. One H-atom

c. $1/12^{th}$ of the mass of H-atom

d. $1/12^{th}$ of the mass of C^{12} -atom

5. Under similar conditions, the ratio by volumes of gaseous reactants and gaseous products is _____

6. Which of the following compounds has the same empirical formula as that of glucose?

a. CH₃CHO

b. CH₃COOH

c. CH₃OH

 $d. C_2H_6$

7. One mole of NaCl contains 6.022×10^{23}

a. Ions

b. Atoms

c. Molecules

d. Formula Unit

8. The modern atomic weight scale is based on

a. ¹²C

b. ¹⁶O

c. ¹H

d. ¹³C

Assertion Reason type questions

- a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
- b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
- c. If Assertion is correct and Reason is wrong.
- d. If Assertion is wrong and Reason is correct.

9. Assertion: 1 g atom of Sulphur contains Avogadro number of molecules.

Reason: Atomicity of S is eight.

10. Assertion: The formula of Calcium carbide is CaC₂.

Reason: 1 mol of CaC₂ contains two moles of C.

Very Short answer type (2 M)

- 11. State:
 - a. Law of definite proportion
 - b. Law of Multiple proportions
- 12. Prove that the sum of all mole fractions of a solution is unity?
- 13. Write the empirical formula of the following:

CO, Na₂CO₃, KCl, H₃PO₄, Fe₂O₃

- 14. An organic compound contains 144g of carbon and 12 g of hydrogen. If molar mass of this compound is 78 gmol⁻¹, calculate:
 - i. Empirical formula
 - ii. Molecular formula
- 15. How many moles of ethane are required to produce 66 g CO₂ after combustion?
- 16. A solution is prepared by dissolving 150g of NaCl in 900 g of water. Calculate the mole fraction of each component.
- 17. How many moles of N₂ are required to produce 85g of NH₃? Calculate its mass.

Short answer type (3 M)

- 18. What do you mean by limiting reagent?
 - 400 g of N₂ and 150 g of H₂ are mixed together to form NH₃. Identify the limiting reagent and calculate the amount of NH₃ produced.
- 19. Explain the following (Answer any three)
 - a. Mole fraction
 - b. Molarity
 - c. Molality
 - d. Atomic mass
- 20. The density of the 2M solution of NaCl is 1.25 g ml⁻¹. Calculate molality of the solution.
- 21. Identify the limiting reagent if 0.6g of magnesium is added to a 100 ml solution of 0.4M hydrochloric acid. Also, Calculate the mass of hydrogen gas produced.

$$(Mg = 24u)$$

22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is 194.19 g/mol. What is its molecular formula?

Passage based questions (4 M)

23.

Passage based question

One mole is the amount of a substance that contains as many particles or entities as there are atoms in exactly 12 g (or 0.012 kg) of the 12C isotope

This number of entities in 1 mol is so important that it is given a separate name and symbol. It is known as the 'Avogadro constant', or Avogadro number denoted by NA in honour of Amedeo Avogadro

Information regarding the number of particles as well as the percentage of a particular element present in a compound is essential.

Mass percent of elements in a compound provides a check whether the given sample contains the same percentage of elements as present in a pure sample. In other words, one can check the purity of a given sample by analysing this data.

- a. Calculate the number of moles present in 44 g of CO₂.
- b. Define the term molar mass.

c. Calculate the no of Oxygen atoms in 100 g of CaCO₃.

OR

c. Calculate the mass percentage of all the elements in Glucose.

Long answer type (5 M)

- 24. a. Commercially available con HCl is in an aqueous solution containing 40% HCl gas by mass. If its density is 1.2 gcm⁻³, calculate the molarity of HCl solution.
 - b. Empirical formula of a gaseous compound is CH_2Cl . 0.12 g of the compound occupies a volume of 37.20cc at 105 degree centigrade and 760 mm Hg. Find the molecular formula of the compound.
 - c. State Avogadro law.

Answers

1	b. $C_3H_8(g) + O_2(g) \to CO_2(g) + H_2O(g)$	
2	b. Carbon forms two oxides namely CO ₂ and CO, where masses of oxygen that combine with a fixed mass of carbon are in the simple ratio 2:1.	
3	c. i-e, ii-d, iii-b, iv-c	
4	d. 1/12 th of the mass of C ¹² -atom	
5	the simple whole number ratio	
6	b. CH ₃ COOH	
7	d. Formula Unit	
8	a	
9	d Assertion is wrong and Reason is correct	
10	b. Both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.	
11	 a. A given compound always contains exactly the same proportion of elements by weight. b. If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers. 	
12	Mole fraction of A in solution $(x_A) = rac{n_A}{n_A + n_B}$	
	Mole fraction of B in solution $(xa)=rac{n_B}{n_A+n_B}$	
	So,	
	$x_A+x_B=rac{n_A+n_B}{n_A+n_B}=1$	

13	$CO - CO$ $Na_2CO_3 - Na_2CO_3$ $KCl - KCl$ $H_3PO_4 - H_3PO_4$ $Fe_2O_3 - Fe_2O_3$				
1.4					
14					
	Element Mass Moles Ratio Simplest ratio				
	C 144 12 1 1				
	H 12 12 1				
	Empirical formula = CH Empirical formula mass = 13 $n = 78/13 = 6$ Molecular formula = C_6H_6				
15	$C_2H_6 + 7/2 O_2 \rightarrow 2CO_2 + 3H_2O$				
	No: of moles of $CO_2 = 66/44 = 1.5$ moles				
	C_2H_6 CO_2				
	As per eqn 1 mol 2 mol As per qsn ? 1.5 mol				
	Ans: 0.75 moles of ethane.				
16	n _{NaCl} = 150 / 58.5 = 2.56				
	$n_{H2O} = 900 / 18 = 50$				
	$\chi_{NaCl} = 2.56 / 2.56 + 50 = 0.0487$				
	$\chi_{\rm H2O} = 50 \: / \: 52.56 = 0.951$				
17	$N_2 + 3H_2 \rightarrow 2NH_3$				
	No: of moles of $NH_3 = 85/17 = 5$ moles				
	N_2 NH_3				
	As per eqn, 1 mol 2 mol As per qsn, ? 5 moles				
	Therefore no: of moles of $N_2 = 2.5$ moles				
18	Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is,				
	therefore, called the limiting reagent.				
	$N_2 + 3H_2 \rightarrow 2NH_3$				
	No: of moles of $N_2 = 400/28 = 14.28$ mol				

	No: of moles of $H_2 = 150 / 2 = 75 \text{ mol}$				
	N_2 H_2				
	As per eqn. 1 3 As per qsn, 14.28 ?				
	No: of moles of H_2 required for 14.28 moles of N_2 = 42.84 mol Therefore, H_2 is excess reagent i.e N_2 is limiting reagent.				
	N_2 NH ₃ As per eqn. 1 2 As per qsn, 14.28 ?				
	Therefore no: of moles of NH ₃ = 28.56 mol Mass of NH ₃ = $28.56 \times 17 = 485.52$ g				
19	a. Mole fraction: It is the ratio of number of moles of a particular component to the total number of moles of the solution.				
	Mole fraction of A				
	$= \frac{\text{No. of moles of A}}{\text{No. of moles of solutions}}$				
	$=\frac{n_{\rm A}}{n_{\rm A}+n_{\rm B}}$				
	Mole fraction of B				
	$= \frac{\text{No. of moles of B}}{\text{No. of moles of solutions}}$				
	$=\frac{n_{\rm B}}{n_{\rm A}+n_{\rm B}}$				
	b. Molarity: It is defined as the number of moles of the solute in 1 litre of the solution.				
	Molarity (M) = $\frac{\text{No. of moles of solute}}{\text{Volume of solution in litres}}$				
	c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent. $ \frac{\text{No. of moles of solute}}{\text{Mass of solvent in kg}} = \frac{\text{No. of moles of solute}}{\text{Mass of solvent in kg}} $				
20	Molarity = 2M Assume volume of solution = 1 L Therefore, No of moles of NaCl = 2 mol				
	Mass of NaCl = $2 \times 58.5 = 117 \text{ g}$				
	Mass of 1 L of solution = $1.25 \text{ gml}^{-1} \times 1000 \text{g} = 1250 \text{ g}$. (Since density = 1.25 gml^{-1} and density = mass / volume)				
	Mass of water = 1250 g -117 g				

	= 1133 g
	Molality = No: of moles of solute/ Mass of solvent(kg)
	= 2/1.133
	$= 1.765 \text{ molkg}^{-1}$
21	Moles of $Mg = 0.6/24 = 0.025 \text{ mol}$
21	Moles of HCl = Molarity \times Volume
	· ·
	$= 0.4 \text{ M} \times 0.1$
	= 0.04 mol
	$Mg + 2HCl \rightarrow MgCl_2 + H_2$
	Mg HCl
	As per eqn, 1 2
	As per qsn, 0.025 ?
	715 per qui, 0.025
	No: of moles of HCl = 0.05 mol
	UCL is the limiting respect
	HCl is the limiting reagent.
	HCl H_2
	As per eqn, 2 1
	As per qsn, 0.04 ?
	Moles of $H_2 = 0.02$ mol
	Mass of $H_2 = 0.02 \times 2$
	= 0.04 g
	3.0 · g
22	Moles of $C = 49.48/12 = 4.12 \text{ mol}$
22	Moles of $H = 5.19/1 = 5.19 \text{ mol}$
	Moles of $O = 16.48/16 = 1.03 \text{ mol}$
	Moles of N = $28.85/14 = 2.06 \text{ mol}$
	Empirical formula = $C_4H_5N_2O$
	$Molecular formula = C_8H_{10}N_4O_2$
23	a. 1 mole
	b. The mass of one mole of a substance expressed in grams.
	c. No of moles = 1mol
	No of molecules = 6.022×10^{23}
	No of O atoms = $3 \times 6.022 \times 10^{23} = 18.066 \times 10^{23}$ atoms
	OR
	c. Molar mass of Glucose = 180 g
	Mass % of an element =
	mass of that element in the compound \times 100
	molar mass of the compound
	mont into or the compound
	Mass% of C = $12 \times 6 / 180 \times 100 = 40$ %
	Mass% of H = $1 \times 12 / 180 \times 100 = 6.66 \%$
	Mass% of $O = 16 \times 6 / 180 \times 100 = 53.3 \%$

24 a. Total mass of solution = 100 gMass of HCl = 40gMoles of HCl = 40/36.5 = 1.09 molDensity of solution = m/v1.2 = 100/VVol of solution = 83.3 mlMolarity = moles of HCl / Vol of solution in L = 1.09/0.0833= 13.08 Mb. pV = nRTp = 760 mm Hg = 1 atm $V = 37.2 \text{ cm}^3 = 0.0372 \text{ L}$ $R = 0.082 \text{ atm } LK^{-1}mol^{-1}$ T = 378 Kn = 0.0012 moln = m / MM0.0012 = 0.12 / MM $Molar\ mass = 100\ g\ mol^{-1}$ Molar mass / Empirical formula mass = 100/49.5 = 2 $Molecular\ formula = C_2H_4Cl_2$ c. Equal volumes of all gases at the same temperature and pressure should contain equal number of molecules.

Prepared by:	Checked by:
Ms. Jasmin Joseph	HOD – SCIENCE & FRENCH