INDIAN SCHOOL AL WADI AL KABIR				
Class: XI	Department: SCIENCE 2023-24 SUBJECT: CHEMISTRY	Date of submission:		
Worksheet No: 01 WITH ANSWERS	CHAPTER / UNIT: SOME BASIC CONCEPTS OF CHEMISTRY	Note:		
NAME OF THE STUDENT	CLASS \& SEC:	A4 FILE FORMAT		

Multiple Choice Questions (1 M)

1. Which of the following reactions is not correct according to the law of conservation of mass?
a. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
b. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c. $\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$
d. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2. Which of the following statements indicates that the law of multiple proportions is being followed?
a. Sample of water taken from any source will always have hydrogen and oxygen in the ratio 2:1.
b. Carbon forms two oxides namely CO_{2} and CO , where masses of oxygen that combine with a fixed mass of carbon are in the simple ratio 2:1.
c. A 10 g ribbon of Mg burns in oxygen and the entire magnesium converts to its oxide.
d. When two elements combine with a fixed mass of the third element, the ratio in which they do so is a simple whole number ratio.
3. Match the items in Columns I and II.

Column I Physical quantity	Column II Unit
i. Molarity	a. gml $^{-1}$
ii. Mole fraction	b. Mol
iii. Mole	c. molkg $^{-1}$
iv. Molality	d. Unitless
	e. molL $^{-1}$

a. $\mathrm{i}-\mathrm{a}, \mathrm{ii}-\mathrm{e}, \mathrm{iii}-\mathrm{b}, \mathrm{iv}-\mathrm{c}$
b. $\mathrm{i}-\mathrm{b}, \mathrm{ii}-\mathrm{e}, \mathrm{iii}-\mathrm{d}, \mathrm{iv}-\mathrm{c}$
c. $\mathrm{i}-\mathrm{e}, \mathrm{ii}-\mathrm{d}, \mathrm{iii}-\mathrm{b}, \mathrm{iv}-\mathrm{c}$
d. $\mathrm{i}-\mathrm{e}, \mathrm{ii}-\mathrm{a}, \mathrm{iii}-\mathrm{b}, \mathrm{iv}-\mathrm{c}$
4. One atomic mass unit stands for
a. One C^{12} atom
b. One H -atom
c. $1 / 12^{\text {th }}$ of the mass of H -atom
d. $1 / 12^{\text {th }}$ of the mass of C^{12}-atom
5. Under similar conditions, the ratio by volumes of gaseous reactants and gaseous products is \qquad
6. Which of the following compounds has the same empirical formula as that of glucose?
a. $\mathrm{CH}_{3} \mathrm{CHO}$
b. $\mathrm{CH}_{3} \mathrm{COOH}$
c. $\mathrm{CH}_{3} \mathrm{OH}$
d. $\mathrm{C}_{2} \mathrm{H}_{6}$
7. One mole of NaCl contains 6.022×10^{23}
a. Ions
b. Atoms
c. Molecules
d. Formula Unit
8. The modern atomic weight scale is based on
a. ${ }^{12} \mathrm{C}$
b. ${ }^{16} \mathrm{O}$
c. ${ }^{1} \mathrm{H}$
d. ${ }^{13} \mathrm{C}$

Assertion Reason type questions

a. If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
b. If both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
c. If Assertion is correct and Reason is wrong.
d. If Assertion is wrong and Reason is correct.
9. Assertion: 1 g atom of Sulphur contains Avogadro number of molecules.

Reason: Atomicity of S is eight.
10. Assertion: The formula of Calcium carbide is CaC_{2}.

Reason: 1 mol of CaC_{2} contains two moles of C .

Very Short answer type (2 M)

11. State:
a. Law of definite proportion
b. Law of Multiple proportions
12. Prove that the sum of all mole fractions of a solution is unity?
13. Write the empirical formula of the following:
```
CO, Na2CO
```

14. An organic compound contains 144 g of carbon and 12 g of hydrogen. If molar mass of this compound is 78 gmol^{-1}, calculate:
i. Empirical formula
ii. Molecular formula
15. How many moles of ethane are required to produce $66 \mathrm{~g} \mathrm{CO}_{2}$ after combustion?
16. A solution is prepared by dissolving 150 g of NaCl in 900 g of water. Calculate the mole fraction of each component.
17. How many moles of N_{2} are required to produce 85 g of NH_{3} ? Calculate its mass.

Short answer type ($\mathbf{3} \mathbf{~ M}$)

18. What do you mean by limiting reagent?

400 g of N_{2} and 150 g of H_{2} are mixed together to form NH_{3}. Identify the limiting reagent and calculate the amount of NH_{3} produced.
19. Explain the following (Answer any three)
a. Mole fraction
b. Molarity
c. Molality
d. Atomic mass
20. The density of the 2 M solution of NaCl is $1.25 \mathrm{~g} \mathrm{ml}^{-1}$. Calculate molality of the solution.
21. Identify the limiting reagent if 0.6 g of magnesium is added to a 100 ml solution of 0.4 M hydrochloric acid. Also, Calculate the mass of hydrogen gas produced.

$$
(\mathrm{Mg}=24 \mathrm{u})
$$

22. Caffeine has the following percent composition: carbon 49.48%, hydrogen 5.19%, oxygen 16.48% and nitrogen 28.85%. Its molecular weight is $194.19 \mathrm{~g} / \mathrm{mol}$. What is its molecular formula?

Passage based questions (4 M)

23.

Passage based question
One mole is the amount of a substance that contains as many particles or entities as there are atoms in exactly 12 g (or 0.012 kg) of the 12 C isotope

This number of entities in 1 mol is so important that it is given a separate name and symbol. It is known as the 'Avogadro constant', or Avogadro number denoted by NA in honour of Amedeo Avogadro

Information regarding the number of particles as well as the percentage of a particular element present in a compound is essential.

Mass percent of elements in a compound provides a check whether the given sample contains the same percentage of elements as present in a pure sample. In other words, one can check the purity of a given sample by analysing this data.
a. Calculate the number of moles present in 44 g of CO_{2}.
b. Define the term molar mass.
c. Calculate the no of Oxygen atoms in 100 g of CaCO_{3}.

OR
c. Calculate the mass percentage of all the elements in Glucose.

Long answer type ($\mathbf{5}$ M)

24. a. Commercially available con HCl is in an aqueous solution containing $40 \% \mathrm{HCl}$ gas by mass. If its density is $1.2 \mathrm{gcm}^{-3}$, calculate the molarity of HCl solution.
b. Empirical formula of a gaseous compound is $\mathrm{CH}_{2} \mathrm{Cl} .0 .12 \mathrm{~g}$ of the compound occupies a volume of 37.20 cc at 105 degree centigrade and 760 mm Hg . Find the molecular formula of the compound.
c. State Avogadro law.

Answers

1	b. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
2	b. Carbon forms two oxides namely CO_{2} and CO , where masses of oxygen that combine with a fixed mass of carbon are in the simple ratio 2:1.
3	c. i-e, ii - d, iii - b, iv - c
4	d. $1 / 12^{\text {th }}$ of the mass of C^{12}-atom
5	the simple whole number ratio
6	b. $\mathrm{CH}_{3} \mathrm{COOH}$
7	d. Formula Unit
8	a
9	d Assertion is wrong and Reason is correct
10	b. Both Assertion and Reason are correct but Reason is not the correct explanation of Assertion.
11	a. A given compound always contains exactly the same proportion of elements by weight. b. If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.
12	Mole fraction of A in solution $\left(x_{A}\right)=\frac{n_{A}}{n_{A}+n_{B}}$ Mole fraction of B in solution $(x a)=\frac{n_{B}}{n_{A}+n_{B}}$ So, $x_{A}+x_{B}=\frac{n_{A}+n_{B}}{n_{A}+n_{B}}=1$

13	$\begin{aligned} & \mathrm{CO}-\mathrm{CO} \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{Na}_{2} \mathrm{CO}_{3} \\ & \mathrm{KCl}-\mathrm{KCl} \\ & \mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Fe}_{2} \mathrm{O}_{3} \end{aligned}$
14	
	Element Mass Moles Ratio Simplest ratio C a
	C 144 12
	H 12 12
	Empirical formula $=\mathrm{CH}$ Empirical formula mass $=13$ $\mathrm{n}=78 / 13=6$ Molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}$
15	$\mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ No: of moles of $\mathrm{CO}_{2}=66 / 44=1.5$ moles Ans: 0.75 moles of ethane.
16	$\begin{aligned} & \mathrm{n}_{\mathrm{NaCl}}=150 / 58.5=2.56 \\ & \mathrm{n}_{\mathrm{H} 2 \mathrm{O}}=900 / 18=50 \\ & \chi_{\mathrm{NaCl}}=2.56 / 2.56+50=0.0487 \\ & \chi_{\mathrm{H} 2 \mathrm{O}}=50 / 52.56=0.951 \end{aligned}$
17	$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ No: of moles of $\mathrm{NH}_{3}=85 / 17=5$ moles Therefore no: of moles of $\mathrm{N}_{2}=2.5$ moles
18	Limiting reagent: The reactant, which gets consumed first, limits the amount of product formed and is, therefore, called the limiting reagent. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ No: of moles of $\mathrm{N}_{2}=400 / 28=14.28 \mathrm{~mol}$

	No: of moles of $\mathrm{H}_{2}=150 / 2=75 \mathrm{~mol}$ No: of moles of H_{2} required for 14.28 moles of $\mathrm{N}_{2}=42.84 \mathrm{~mol}$ Therefore, H_{2} is excess reagent i.e N_{2} is limiting reagent. Therefore no: of moles of $\mathrm{NH}_{3}=28.56 \mathrm{~mol}$ Mass of $\mathrm{NH}_{3}=28.56 \times 17=485.52 \mathrm{~g}$
19	a. Mole fraction : It is the ratio of number of moles of a particular component to the total number of moles of the solution. Mole fraction of A $\begin{aligned} & =\frac{\text { No. of moles of } \mathrm{A}}{\text { No. of moles of solutions }} \\ & =\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \end{aligned}$ Mole fraction of B $\begin{aligned} & =\frac{\text { No. of moles of } \mathrm{B}}{\text { No. of moles of solutions }} \\ & =\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \end{aligned}$ b. Molarity : It is defined as the number of moles of the solute in 1 litre of the solution. $\text { Molarity }(\mathrm{M})=\frac{\text { No. of moles of solute }}{\text { Volume of solution in litres }}$ c. Molality: It is defined as the number of moles of solute present in 1 kg of solvent. $\text { Molality }(\mathrm{m})=\frac{\text { No. of moles of solute }}{\text { Mass of solvent in kg }}$
20	```Molarity \(=2 \mathrm{M}\) Assume volume of solution \(=1 \mathrm{~L}\) Therefore, No of moles of \(\mathrm{NaCl}=2 \mathrm{~mol}\) Mass of \(\mathrm{NaCl}=2 \times 58.5=117 \mathrm{~g}\) Mass of 1 L of solution \(=1.25 \mathrm{gml}^{-1} \times 1000 \mathrm{~g}=1250 \mathrm{~g}\). (Since density \(=1.25 \mathrm{gml}^{-1}\) and density \(=\) mass \(/\) volume) Mass of water \(=1250 \mathrm{~g}-117 \mathrm{~g}\)```

	$\begin{aligned} & =1133 \mathrm{~g} \\ \text { Molality } & =\text { No: of moles of solute/ Mass of solvent }(\mathrm{kg}) \\ & =2 / 1.133 \\ & =1.765 \mathrm{molkg}^{-1} \end{aligned}$
21	$\begin{aligned} & \text { Moles of } \mathrm{Mg}=0.6 / 24=0.025 \mathrm{~mol} \\ & \begin{aligned} \text { Moles of } \mathrm{HCl} & =\mathrm{Molarity} \times \text { Volume } \\ & =0.4 \mathrm{M} \times 0.1 \\ & =0.04 \mathrm{~mol} \end{aligned} \\ & \begin{aligned} \mathrm{Mg}+2 \mathrm{HCl} & \rightarrow \\ & \mathrm{MgCl}_{2}+\mathrm{H}_{2} \end{aligned} \\ & \mathrm{Mg} \\ & \text { As per eqn, } \quad 1 \end{aligned}$ No: of moles of $\mathrm{HCl}=0.05 \mathrm{~mol}$ HCl is the limiting reagent. Moles of $\mathrm{H}_{2}=0.02 \mathrm{~mol}$ Mass of $\mathrm{H}_{2}=0.02 \times 2$ $=0.04 \mathrm{~g}$
22	$\begin{aligned} & \text { Moles of } \mathrm{C}=49.48 / 12=4.12 \mathrm{~mol} \\ & \text { Moles of } \mathrm{H}=5.19 / 1=5.19 \mathrm{~mol} \\ & \text { Moles of } \mathrm{O}=16.48 / 16=1.03 \mathrm{~mol} \\ & \text { Moles of } \mathrm{N}=28.85 / 14=2.06 \mathrm{~mol} \\ & \\ & \text { Empirical formula }=\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O} \\ & \text { Molecular formula }=\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \end{aligned}$
23	a. 1 mole b. The mass of one mole of a substance expressed in grams. c. No of moles $=1 \mathrm{~mol}$ No of molecules $=6.022 \times 10^{23}$ No of O atoms $=3 \times 6.022 \times 10^{23}=18.066 \times 10^{23}$ atoms OR c. Molar mass of Glucose $=180 \mathrm{~g}$ Mass \% of an element = $\underline{\text { mass of that element in the compound } \times 100}$ molar mass of the compound Mass \% of C $=12 \times 6 / 180 \times 100=40 \%$ Mass $\%$ of $\mathrm{H}=1 \times 12 / 180 \times 100=6.66 \%$ Mass $\%$ of $\mathrm{O}=16 \times 6 / 180 \times 100=53.3 \%$

a. Total mass of solution $=100 \mathrm{~g}$

Mass of $\mathrm{HCl}=40 \mathrm{~g}$
Moles of $\mathrm{HCl}=40 / 36.5=1.09 \mathrm{~mol}$
Density of solution $=\mathrm{m} / \mathrm{v}$
$1.2=100 / \mathrm{V}$
Vol of solution $=83.3 \mathrm{ml}$
Molarity $=$ moles of $\mathrm{HCl} / \mathrm{Vol}$ of solution in L
= 1.09/0.0833

$$
=13.08 \mathrm{M}
$$

b.
$\mathrm{pV}=\mathrm{nRT}$
$\mathrm{p}=760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$
$\mathrm{V}=37.2 \mathrm{~cm}^{3}=0.0372 \mathrm{~L}$
$\mathrm{R}=0.082 \mathrm{~atm} \mathrm{LK}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=378 \mathrm{~K}$
$\mathrm{n}=0.0012 \mathrm{~mol}$
$\mathrm{n}=\mathrm{m} / \mathrm{MM}$
$0.0012=0.12 / \mathrm{MM}$
Molar mass $=100 \mathrm{~g} \mathrm{~mol}^{-1}$
Molar mass $/$ Empirical formula mass $=100 / 49.5=2$
Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
c. Equal volumes of all gases at the same temperature and pressure should contain equal number of molecules.

